PROCESS DEVELOPMENT FOR HIGH V_{oc} CdTe SOLAR CELLS University of South Florida PI: C. S. Ferekides GAS: H. Zhao, V. Padma, R. Rudaraju SUBCONTRACT NO: ND.1-2-30630-18 DOE Solar Energy Technologies Program Peer Review Denver, Colorado April 17-19, 2007 ### OBJECTIVE The main objective of this project is: to investigate new materials, device structures, and processes, in order to advance the open-circuit voltage (V_{OC}) of CdTe solar cells beyond the present state-of-the art levels of 840-850 mVs ### Focus Areas - A: Front Contact/Window Layer: study the effect of buffer layers and CdS "doping" on device performance - · TiO₂ buffer - Indium doping of CdS - B: <u>Absorber (CdTe) Impurity Effects:</u> study the effect of impurities in CdTe on solar cell characteristics - · CSS Ambient the effect of O2 - "Doped" Source Material (CdTe:P) - · Sb-diffusion (post-deposition) - C: <u>Back Contact</u>: develop deposition methods for high work function materials and utilize as back contacts to CdTe solar cells - TiSe₂ by selenization ### Buffers Buffers or high- ρ transparent films are being used in CdTe cells to "sustain" high V_{oc} 's (in particular when CdS is thin) **Back Contact** CdTe CdS High-p "buffer" Conductive TC GLASS Substrate For this Project TiO₂ has been deposited by RF sputtering and used as the high-p buffer #### "BUFFER" REFERENCES [&]quot;Transparent Conductors and Buffer Layers for CdTe Solar Cells", C. S. Ferekides, R. Mamazza, U. Balasubramanian, and D. L. Morel, Thin Solid Films, 480-481, (2005) pp. 224-229 [&]quot;High-Efficiency Cd₂SnO₄/Zn₂SnO₄/Zn_xCd_{1-x}S/CdS/CdTe Polycrystalline Thin-Film Solar Cells", X. Wu, R. Ribelin, R.G. Dhere, D. Albin, T. Gessert, S. Asher, D. Levi, A. Mason, H. R. Moutinho, P. Sheldon, Proc IEEE PVSC 2000, VOL 28, pp. 470-474 [&]quot;The Structural and Electrical Properties of Zn-Sn-O Buffer Layers and their Effect on CdTe Solar Cell Performance", S. Gayam, S. Bapanapalli, H. Zhao, L. Nemani, D. L. Morel and C. S. Ferekides, in print Journal of Thin Solid Films [&]quot;Transparent Conducting Oxide Thin Films of Cd₂SnO₄ by RF Magnetron Co-sputtering of the Constituent Binary Oxides", R. Mamazza, D. L. Morel, and C. S. Ferekides, Thin Solid Films, 484, 1-2, (2005), pp. 26-33 # TiO₂ Films TiO₂ Films were prepared by Sputtering under various deposition conditions: #### **Deposition Process Variations:** - From TiO₂ ceramic target - From Ti (in O₂) - In N₂-Containing ambient - $T_{SUB} = RT 300^{\circ}C$ - Post-deposition annealed at high temp. (>600°C) in air - SEM & XRD Analysis - Solar Cell Fabrication # TiO₂ - Structural Analysis - All TiO₂ Films appeared to contain both TiO₂ phases (Anatase and Rutile) - High Temp annealing improved crystallinity - Electrical Resistivity VERY high and unmeasureable by simple 4-point probe measurements - Optical transmission high and essentially unaffected by deposition conditions | Sample | 2 Theta [°] | d-spacing [Å] | FWHM | Rel. Int. [%] | ID | |---|-------------|---------------|--------|---------------|---------| | T _{DEP} =RT | | 3.5164 | | | (101) A | | Ann. 650°C/Air | 27.422 | | 0.1181 | 100 | (110) R | | (green data) | 48.179 | 1.8888 | 0.3149 | | (200) A | | | 54.593 | 1.6797 | 2.304 | | (211) A | | T _{DEP} =RT | | 3.5141 | 0.1574 | 100 | (101) A | | Ann. 650°C/Air | 27.343 | 3.2617 | 0.4723 | 45.44 | (110) R | | (purple data) | 48.105 | 1.8915 | | | (200) A | | | 55.18 | 1.6632 | | 24.81 | (211) A | | T _{DEP} =250°C (O ₂ &N ₂) | | 3.4763 | 0.1181 | 100 | (101) A | | (orange data) | | 2.3148 | 0.4723 | | (200) R | ## CdTe/CdS/TiO2/SnO2:F Solar Cells | TiO ₂ Deposition Conditions | | | | | V | FF Range | |--|------------------------|------------------------|-----------|-------------------|-------------------------|----------| | Ar
[mT] | N ₂
[mT] | O ₂
[mT] | T
[°C] | Thickness
[nm] | V _{oc}
[mV] | [%] | | 4.5 | 1.5 | - | 180 | 30 | 880 | 5-25 | | 4.5 | 1.5 | - | 180 | 10 | 840 | 8-27 | | 4.5 | 1.5 | - | 180 | 20 | 790 | 13-22 | | 1 | - | 4 | 250 | 30 | 780 | 10-12 | | - | - | 5 | 250 | 30 | 820 | 7-9 | V_{OC} values represent HIGHEST measured at given conditions - A max V_{OC} of 880 mV measured - · Highest V_{oc} 's measured for TiO_2 films deposited in N_2 - · FF's below 25% in all cells fabricated to-date - Highest V_{oc}'s typically accompanied by lowest FF's - · Significant scattering in the data - Poor performance may be in part due to high resistivity of TiO₂ - · Potential formation of microdiodes (data scattering) # CdTe/CdS/TiO₂/SnO₂:F Solar Cells Typical J-V Characteristic - Is the high resistivity of TiO₂ the limiting factor? - If yes Can TiO₂ films be doped for lower resistivity? - · Other buffers utilized successfully in the past have exhibited resistivity in the 1-10 Ω -cm range # Large Work Function Materials Key device parameters that limit $V_{\mathcal{OC}}$ are: doping in CdTe and energy of back contact (see fig. below) If interfacial effects can be eliminated (@ back contact/CdTe interface), large work function materials could lead to improved $V_{\it oc}$ and solar cell performance # For this Project TiSe₂ has been prepared by selenizing Ti Results from modeling of CdTe solar cells using MEDICI © REFERENCES on Large Work Function Materials DOE Solar Energy Technologies Program Peer Review Denver, Colorado, April 17-19, 2007 [&]quot;Preparation and Electrical Properties of Niobium Selenide and Tungsten Selenide", R. Kershaw, M. Vlasse and A. Wold, Inorganic Chemistry 6 (8), pp.1599-& (1967) [&]quot;The Transport-Properties of Vanadium-Doped TiSe₂ under Pressure", R. H. Friend, S. S. P. Parkin and D. Jerome, Journal of Physics C-Solid State Physics 15 (25), pp.L871-L874 (1982) [&]quot;Alternative back contacts for CdTe solar cells: a photoemission study of the VSe₂/CdTe and TiSe₂/CdTe interface formation", D. Kraft, U. Weiler, Y. Tomm, A. Thissen, A. Klein and W. Jaegermann, Thin Solid Films, Volumes 431-432, 1 May 2003, Pages 382-386 ### TiSe₂ by Selenization of Ti Ti films deposited on glass (by sputtering) were selenized in a Se flux (by evaporation) in high vacuum @ elevated substrate temperatures - The TiSe₂ Phase was identified in films selenized at temperatures over 400°C - To-date no solar cells have been made with this material as the back contact - Problem: TiSe₂ formation temperature (& vacuum environ.) lead to evaporation of CdTe - Must explore compatible TiSe₂ deposition process ### Effect of Impurities in CdTe One of the tasks of this project is to study the role of impurities in CdTe in order to be able to increase its net carrier concentration and therefore the built-in potential and $V_{\it OC}$ #### To-date: - (a) Incorporated Phosphorous (P) in the CSS-CdTe source material - (b)Studied the effect of O_2 partial pressure in the ambient of the CSS process - (c) Diffused Sb (post-deposition) into CdTe Fabricated cells with all of the above ### CdTe:P - Introduced Phosphorous into CdTe by mixing CdTe + Cd₂P₃ powders in a quartz ampoule and heating at high temp. (5% at. P) - · Used "mixed powder" as source material during CSS deposition process - Evidence of "P transport" during CSS (using EDS measurements) - However, it appears that the source gets depleted of P within the first 2 depositions Solar Cell results were very poor and only improved (slightly) after CdCl₂ heat treatment # Effect of CSS-Ambient: Oxygen - Varied amount of O₂ during CSS deposition - Total pressure; 10 torr - N₂/O₂: 9/1; 7/3; 5/5; 1/9 - T_{SUB}/T_{SRC} : 550/630°C - Cells contacted with graphite paste ### Effect of CSS-Ambient: Oxygen - Increasing O_2 -partial pressure results in decreasing J_O (Improved V_{OC} 's) - Turn-on dark characteristics suggest CdS characteristics vary among the cells (become more resistive and photoconductive in cells with high oxygen partial pressure) ### Effect of CSS-Ambient: Oxygen • Increasing O_2 -partial pressure leads to increased net carrier concentration – which however seems to "saturate" in the $10^{14} \rm cm^{-3}$ range · FF improves as O_2 pp increases due to improved collection Oxygen appears to have multiple effects (on CdTe p-concetration and on Cd5 photoconductivity) | | N_2/O_2 | | | | |------------------------------|-------------------------|-------------------------|-------------------------|------------------------| | | 9/1 | 7/3 | 5/5 | 1/9 | | $N_A - N_D [cm^{-3}]$ | 1.98 x 10 ¹⁴ | 2.77 x 10 ¹⁴ | 3.46 x 10 ¹⁴ | 3.4 x 10 ¹⁴ | | W _D @0 Volts [μm] | 3.03 | 1.82 | 1.98 | 2.03 | Calculated from C-V measurements - FF losses most likely due to collection - · Similar shunt resistances #### CdTe:Sb The CdCl₂ heat treatment (HT) was included for the fabrication of most CdTe:Sb based cells due to the large impact it has on device characteristics | Sample ID | "A" | "B" | "C" | "D" | |---|--|---------|---------|---------| | CdTe | O ₂ ambient; thickness 5-6 μm | | | | | Sb Thickness on CdTe [nm] | 20 | | | | | Heat Treatment (Sb Diffusion) T[°C]/time[min] | 400/25 | 450/25 | 430/25 | 430/25 | | CdCl ₂ HT | None | None | Yes | Yes | | Contact | Sputtered Mo | | | | | V _{oc} [mV] | 710-730 | 740-750 | 800-810 | 810-830 | | FF [%] | 37-41 | 41-44 | 61 | 61-62 | (c) ### The Need for the CdCl₂ HT The effect of the CdCl₂ HT on device performance (for the specific set of devices) is on the order of 5% (i.e. efficiencies improved from 6-7% to 11+%) Device performance improves in several ways: - improved collection - improved back contact performance (i.e. reduction in back barrier) - higher V_{oc}s #### Effect of "Excess Surface" Sb Sb₂Te₃ has been previously used for the fabrication of effective back contacts. Therefore Sb remaining on the surface of the CdTe after the diffusion heat treatment could influence the solar cell characteristics. HCl etch was used to remove excess Sb from the CdTe surface Device results DO suggest that NOT removing Sb yields better performance | Sample ID | "400/HCI" | "400/NO HCI" | "450/HCI" | "450/NO HCI" | | |---|---|--------------|-----------|--------------|--| | CdTe | In O ₂ ambient; thickness 5-6 μm | | | | | | Sb Thickness on CdTe [nm] | 20 | | | | | | Heat Treatment (Sb Diffusion) T[°C]/time[min] | 400/25 | 400/25 | 450/25 | 450/25 | | | HCI Etch | Yes | No | Yes | No | | | CdCl ₂ HT | None | | | | | | Contact | Sputtered Mo; | | | | | | V _{oc} [mV] | 680-690 | 710-730 | 630-680 | 740-750 | | | FF [%] | 37-38 | 37-41 | 32-37 | 41-44 | | #### REFERENCE on Sb₂Te₃ Back Contact "Development of efficient and stable back contacts on CdTe/CdS solar cells", D. L. Bätzner, A. Romeo, H. Zogg, R. Wendt, A.N. Tiwari Thin Solid Films, 387, 1-2, (2001) pp. 151-154 ## Dark and Light J-V Cells etched with HCl exhibit lower J_{SC} , lower V_{OC} and their forward dark currents are significantly lower than those in un-etched samples The observed behavior points to Sb influencing the back contact region of the device (either as a "contact material" or by increasing the p⁺ doping at the back surface of CdTe) #### The Effect of Sb-Diffusion Process #### Sb-diffusion Time: - Longer Sb-diffusion times result in improved V_{OC} by approximately 30–50 mV - · However, performance seems to "level off" | Sample ID | "40" | "80" | "120" | "160" | |---|---|---------|---------|---------| | CdTe | In O ₂ ambient; thickness 5-6 μm | | | | | Sb Thickness on CdTe
[nm] | 30 | | | | | Heat Treatment
(Sb Diffusion)
T[°C]/time[min] | 400/40 | 400/80 | 450/120 | 450/160 | | CdCl ₂ HT | YES | | | | | Contact | Sputtered Mo; | | | | | V _{oc} [mV] | 700-730 | 750-770 | 730-770 | 740-770 | | FF [%] | 58-63 | 60-62 | 61-63 | 61-64 | #### The Effect of Sb-Diffusion Process #### Sb-diffusion Time: - · C-V measurements indicate an increase in doping profile - Doping levels "saturate" and are well within the "typical" CdTe doping levels (i.e. 10¹⁴ cm⁻³) #### The Effect of Sb-Diffusion Process #### Sb-diffusion Temperature: - · In general, performance improves up to 450°C - · SR for high T indicative of interfacial recombination - · Optimum diffusion temperatures in the 400-450°C range ### CdTe:Sb vs. CdTe #### SAME CELL RESULTS One half of the substrate fabricated with Sb-diffusion Second half w/o Sb Higher V_{oc} (50 mV) and higher doping profile for Sb-diffused sample DOE Solar Energy Technologies Program Peer Review Denver, Colorado, April 17-19, 2007 ## Indium Doping of CdS #### Three process variations: - Apply a thin In film prior to CSS-CdS deposition - Apply a thin In film after the CSS-CdS deposition (heat treat) - Use In-doped CSS-CdS source (purchased with 500 ppm In) ## Indium Doping of CdS Three -Variations Apply a thin In film prior to CSS-CdS deposition Apply a thin In film after the CSS-CdS deposition (heat treat) · Use In-doped CSS-CdS source (purchased with 500 ppm In) Preliminary solar cell results for process (b): post CdS deposition Indiffusion # Summary - Deposited TiO₂ films by rf sputtering under various conditions - Evaluated structural properties of TiO₂ - both Anatase and Rutile phases are present in all instances - Incorporated TiO₂ films in CdTe cells as buffers - Measured 880 mV Voc. HOWEVER ... - "TiO2" cells suffer from extremely low FF's (<25%) presumably due to the high electrical resistivity of TiO2 - Investigated three potential p-type dopants for CdTe: Sb, O, P - Dopant transport during the CSS process is not efficient (P-experiments) - Sb and O "doping" suggest an increase in the net hole concentration in CdTe, HOWEVER ... - Doping levels always appear to saturate in the $10^{14}~\text{cm}^{-3}$ range - CdCl₂ HT is indeed a necessary process step (at this time) ... - · Prepared TiSe₂ films by selenization of Ti to use as back contacts to CdTe - Ti-selenization process incompatible with CdTe solar cell - Must develop a process compatible with CdTe films (solar cell structures) - Initiated work on Doping of CdS - Device results are still preliminary